Heat equation

Weak form

The heat equation without phase change is given by:

\[\rho(T) C_p(T) \frac{\partial T}{\partial t} - \nabla \cdot \left(k\nabla T\right) = Q,\]

where \(\rho\) is the mass density, \(C_p\) is the specific heat, \(T\), is the temperature, \(k\) is the thermal conductivity, and \(Q\) is the volumetric heat source.

When there is a phase change, the heat equation is usually written in term of the enthalpy, \(h\):

\[\frac{\partial h(T)}{\partial t} - \nabla \cdot \left(k\nabla T\right) = Q\]

In the absence of phase change, we have:

\[h(T) = \int_{T_0}^T \rho(T) C_p(T) dT.\]

Under the assumption of a phase change with a mushy zone, \(C_p\) and \(\rho\) are independent of the temperature, we write:

\[h(T) = \cases{ \rho_s C_{p,s} T & if $T<T_{s}$\cr \rho_s C_{p,s} T_s + \left(\frac{\rho_s C_{p,s}+\rho_l C_{p,l}}{2} + \frac{\rho_s+\rho_l}{2} \frac{\mathcal{L}}{T_l-T_s}\right) (T-T_s) & if $T>T_{s}$ and $T<T_l$ \cr \rho_s C_{p,s} T_s + \frac{C_{p,s}+C_{p,l}}{2} (T_l - T_s) + \frac{\rho_s+\rho_l}{2} \mathcal{L} + \rho_s C_{p,l} (T-T_l) & if $T>T_l$. }\]

Since we only care about \(\frac{\partial h{T}}{\partial t}\), we have:

\[\frac{\partial h(T)}{\partial t} = \cases{ \rho_s C_{p,s} \frac{\partial T}{\partial t} & if $T \leq T_{s}$\cr \left(\rho_{\text{eff}} C_{p,\text{eff}} + \rho_{\text{eff}} \frac{\mathcal{L}}{T_l-T_s}\right) \frac{\partial T}{\partial t} & if $T>T_{s}$ and $T<T_l$ \cr \rho_l C_{p,l} \frac{\partial T}{\partial t} & if $T \geq T_{l}$ }\]

Note that we have a more complicated setup because we have two solid phase (solid and powder).

So far we haven’t discussed \(k\). \(k\) is simply given by:

\[k = \cases{ k_s & if $T \leq T_s$ \cr k_s + \frac{k_l - k_s}{T_l - T_s} (T- T_s) & if $T>T_s$ and $T<T_l$ \cr k_l & if $T \geq T_l$ }\]

Finally we can write:

  • if \(T \leq T_s\), we have:

    \[\frac{\partial T}{\partial t} = \frac{1}{\rho_s C_{p,s}} \left(\nabla \cdot \left(k \nabla T\right) + Q\right)\]
  • if \(T_s < T < T_l\), we have:

    \[\frac{\partial T}{\partial t} = \frac{1}{\left(\rho_{\text{eff}} C_{p,\text{eff}} + \rho_{\text{eff}} \frac{\mathcal{L}}{T_l-T_s}\right)} \left( \nabla \cdot \left(k \nabla T\right) + Q \right)\]
  • if \(T \geq T\), we have:

    \[\frac{\partial T}{\partial t} = \frac{1}{\rho_l C_{p,l}} \left(\nabla \cdot \left(k \nabla T\right) + Q\right)\]

Next, we will focus on the weak form of:

\[\frac{\partial T}{\partial t} = \frac{1}{\rho C_{p}} \left(\nabla \cdot \left(k \nabla T\right) + Q\right).\]

We have successively with \(\alpha = \frac{1}{\rho C_{p}}\):

\[\int b_i \frac{\partial T_j b_j}{\partial t} = \int b_i \alpha \left(\nabla \cdot \left(k \nabla T_j b_j\right) + Q\right),\] \[\int b_i b_j \frac{d T_j}{dt} = \int T_j \alpha b_i \nabla \cdot \left(k \nabla b_j\right) + \int \alpha b_i Q,\] \[\left(\int b_i b_j\right) \frac{d T_j}{dt} = - \int T_j \nabla \left(\alpha b_i\right) \cdot \left(k \nabla b_j\right) + \int_{\partial} \alpha T_j b_i \boldsymbol{n}\cdot \left(k \nabla b_j\right) + \int \alpha b_i Q.\]

The term \(-\int T_j \nabla \left(\alpha b_i\right) \cdot \left(k \nabla b_j\right)\) can be written as:

\[\\ \begin{align} -\int T_j \nabla \left(\alpha b_i\right) \cdot \left(k \nabla b_j\right) &= -\int T_j \left(\left(\nabla \alpha\right) b_i + \alpha (\nabla b_i)\right) \cdot \left(k \nabla b_j\right), \\ &= -\int T_j \left(\left(-\frac{\left(\nabla \rho\right) C_p + \rho \left(\nabla C_p\right)}{\left(\rho C_p\right)^2}\right) b_i + \alpha (\nabla b_i)\right) \cdot \left(k \nabla b_j\right). \end{align} \\\]

If we assume that \(\rho\) and \(C_p\) only depend on the temperature, we get:

\[\\ \begin{align} -\int T_j \nabla \left(\alpha b_i\right) \cdot \left(k \nabla b_j\right) &= -\int T_j \left(\left(-\frac{\frac{\partial \rho}{\partial T} C_p\left(\nabla T\right) + \rho \frac{\partial C_p}{\partial T}\left(\nabla T\right)}{\left(\rho C_p\right)^2}\right) b_i + \alpha (\nabla b_i)\right) \cdot \left(k \nabla b_j\right), \\ &= -\int T_j \left(\left(-\frac{\left(\frac{\partial \rho}{\partial T} C_p + \rho \frac{\partial C_p}{\partial T}\right)\left(\nabla T\right)}{\left(\rho C_p\right)^2}\right) b_i + \alpha (\nabla b_i)\right) \cdot \left(k \nabla b_j\right), \\ \end{align} \\\]